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CHAPTER 1
INTRODUCTION AND HISTORICAL OVERVIEW

Signal compression has been the subject of extensive research for quite some time,
with initial developments originating midway through the twentieth century. The
work of Shannon [1] has resulted in theoretical foundations of signal compression.
In his classic paper, the entropy, or information content, of a source was formulated
and it was shown that the minimum transmission rate should be equal to or greater
than the entropy for zero coding errors. Following this work was the eventual de-
velopment of rate-distortion theory [2], [3], [4], which provided channel capacity
bounds with a fidelity criterion and inspired researchers to delve further into the
area of source coding research. Since that time, there has been rapid progress in the
development of source coding techniques. These techniques, aimed at miniﬁlizing
signal redundancy, have proven to be more efficient in terms of bit rate reduction
than the more conventional techniques, such as pulse code modulation (PCM), and
differential pulse code modulation (DPCM). Many of the applications have focused
on the coding of video, speech, and commentary grade (7 kHz bandwidth) audio
signals. The techniques receiving considerable attention, especially for the coding
of speech and audio signals, were frequency domain coding techniques.

Early speech coding results due to Crochiere, Webber, and Flanagan [5], and
Crochiere [6], demonstrated the advantages of partitioning the speech spectrum into
bands and coding each of the bands separately using either PCM or DPCM. This
technique, known as subband coding, is used in current speech and audio coding
standards and is a topic of great importancé in this work. Other speech coding sys-

tems made use of transform coding. These systems relied on the use of a mathmetical




transform to convert blocks of data into a representative set of transform coefficients.
Zelinski and Noll [7] developed an adaptive transform coding system which took into
account the changing statistics of typical speech waveforms. Speech coding results
were soon complemented with the work of Johnston and Goodman [8], where a
two-band subband coding system designed for transmission of bandlimited speech
and music was developed. Additional improvements including real-time implemen-
tations for speech and audio coding were investigated by Cox [9] and Crochiere [10].
Although this research primarily focused on the two-band subband coding system,
efforts to extend to a four-band, tree-structured system were already beginning to
take shape. These subband based systems provided good subjective quality for
telephone and commentary grade audio transmission at bit rates of 4 bits/sample.
By the early to mid 80’s, transform and other frequency domain coding systems
designed for audio began to develop. At this time the revolutionary Compact Disc
(CD) had arrived, which further spurred research interests in the area referred to as
wideband (20 kHz bandwidth) audio coding.

The emergence of the CD marked an unprecedented achievement in the field of
wideband audio reproduction. While providing very fine amplitude resolution and
a large dynamic range, the CD continues to offer the highest audio quality among
current audio reproduction technologies. Its 16 bit PCM format is an accepted
audio representation standard [11]. The high sampling rate of CD, in addition to
sample representation with a large number of bits, has made transmission of CD-
quality audio difficult. At a sampling rate of 44.1 kHz, and amplitude quantization
of 16 bits/sample, the resulting transmission rate of 705.6 kb/s is unacceptable for
channels of limited capacity, such as mobile radio channels [11]. It is known that for
CD-quality audio, the goal of sufficient data rate reduction must be accomplished by

coding the data in a way such that the level of signal degradation is not perceptible




to the user. A solution to this challenging task is to hide, or mask distortions due
to quantization, thereby making them inaudible.

The work of Brandenburg [12] resulted in an efficient frequency domain coding
algorithm which operated on principles similar to transform coding systems. This
algdrithm included time-to-frequency conversion of an input sample block via a dis-
crete cosine transform (DCT) and subsequent entropy coding. Auditory masking
was also used to compute acceptable levels of distortion. This coding system pro-
duced transparent coding of wideband audio at 3 bits/sample. A transform coding
system developed by Johnston [13] also resulted in transparent coding of wideband
audio at bit rates of 4 and 3 bits/sample. This coding scheme employed a human
auditory model to derive short-term spectral masking curves which were then used
to extract signal redundancies. Although the exploitation of human perception char-
acteristics had been applied earlier for the optimization of speech coding systems,
the use of source models was the primary basis for efficient coding gains. Other
transform coding systems and more complex multi-band subband coding systems
appeared later. These systems also made use of the masking phenomena for the
suppression of noise components. Good to excellent subjective audio quality was
attainable at bit rates of 2.5 bits/sample and higher.

The coding methods previously mentioned have been improved upon with
innovative filterbank implementations and advances in hardware that have taken
place over the past few years. Such improvements along with the arrival of newer
technologies and higher degrees of consumer quality expectations have opened doors
to a revisiting of wideband audio coding.

In recent years, significant advances have been made in the compression of

wideband audio signals. Currently, powerful algorithms are available that can




achieve eﬁcient compression ratios while maintaining a high level of signal qual-
ity. The Moving Pictures Expert Group within the International Organization of
Standardization (ISO/MPEG) has recently completed a standard for the coding of
high quality digital audio. This audio coding standard is the first international stan-
dard in the field of high quality digital audio compression [11]. The MPEG audio
coder is capable of providing transparent coding of CD-quality audio at bit rates
of 2.67 and 2 bits/sample, or 128 and 96 kb/s at a sampling rate of 48 kHz. The
need to further reduce these rates for transmission or storage applications remains
an ongoing area of research.

The subject of this work involves the design and implementation of a 32-band
subband coding system for CD-quality audio signals. In this system, an attempt is
made to reduce the data rate to the entropy of the quantized audio source through
the use of a Laplacian based rate-distortion subband model and the technique of
arithmetic coding. A system block diagram can be seen in Figure 1.1. Many of
the basic elements of this audio coding system are similar to those of the MPEG
system. A detailed discussion of specific aspects of the system is the subject of later
chapters, however a brief overview of some of the differences between this system
and the MPEG system is appropriate.

The MPEG audio coding system is a subband coding system, which as stated
above, falls into the class of frequency domain coding systems. A main objective
of any subband coding system is the optimal or near optimal allocation of bits, or
bit rate, among subbands. In the MPEG system, a dynamic rate allocation method
controlled by psychoacoustic model calculations is used to determine the number
of quantizer levels for a given subband. This rate allocation procedure results in
the assignment of an integer number of bits to each subband. Contrary to this

procedure, the rate allocation method employed in this work assigns a non-integer




number of bits. This non-integer bit assignment is interpreted as the entropy of the
quantizer output of a particular subband. Its computation is based on short-term
signal statistics, the subband model parameters, and masking threshold calculations.
An additional difference between coders is the coding of the subband samples and
appropriate side information. The MPEG coder consists of three layers of increasing
complexity. In MPEG Layer I, samples are coded independently with one codeword,
while in Layer II the higher frequency subbands are coded by forming groups of
three samples, where each group, or “granule,” is assigned a single codeword [14].
Layer III MPEG makes use of non-uniform quantization and entropy coding, where
a Huffman code is used to represent the quantizer indices [14]. The distinction
between the MPEG system and the system considered here comes from the use of
arithmetic coding. The motivation for the use of arithmetic coding is due to greater
compression efficiency than the Huffman coding technique and the possibility of
reducing the data rate to the entropy of the quantized audio source. Such a reduction
in rate, assuming there is no perceptible loss in signal quality, suggests a maximum
compression efficiency system.

In the chapters that follow, an in-depth discussion of the components that
make up the audio coding system is presented. Chapter 2 focuses on the filter
bank and provides a discussion of its design and important properties. Chapter 3
discusses the concepts of subband and variable rate coding. It is in this chapter
that topics such as entropy-constrained scalar quantization and arithmetic coding
are presented. The use of these techniques in an adaptive audio coding scheme is
outlined. In Chapter 4 an explanation of noise masking phenomena and the use of
the masking threshold in subband coding is provided. Chapter 5 contains results of
coding simulations implemented using audio segments taken from a compact disc.

The overall performance of the system is addressed in this chapter as well. The




conclusion of the work and additional remarks are given in Chapter 6.
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CHAPTER 2
SINGLE-SIDEBAND ANALYSIS-SYNTHESIS FILTER BANK

2.1 Introduction

The use of analysis-synthesis digital filter banks are of great importance in fre-
quency domain coding systems. These systems require a frequency decomposition,
or analysis of an applied input signal into contiguous frequency bands, referred to as
channel signals. These channel signals, after appropriate coding and transmission,
are used in the subsequent reconstruction, or synthesis of the original input. Figures
2.1 and 2.2 provide illustrations of these concepts.

Numerous advances have been made in the design and implementation of
analysis-synthesis filter banks over the course of the past ten years. This research
has resulted in the appearance of several filter bank structures and computationally
efficient implementations, as seen in the literature [15], [16], [L7], [18], [19]. The
analysis-synthesis filter bank considered in this work is described as a modulated
filter bank, which falls into the class of single-sideband (SSB) modulation. This par-
ticular modulation scheme results in real-valued channel signals, unlike the discrete
Fourier transform (DFT) filter bank which results in complex-valued channel signals.
The channel filter responses are derived from modulation of a single low-pass proto-
type response, a feature which requires the design of only one digital filter. Taken
together, these modulated filter responses form the overall SSB analysis-synthesis
filter bank. The coding system presented in this work requires the use of a filter
bank consisting of 32 uniformly spaced frequency bands in the range 0 < w < 7.
The following section provides an overview of the design of the filter bank from a

theoretical standpoint.




2.2 Single-Sideband Filter Bank Design

The single-sideband filter bank can be derived directly from a filter bank based
on a generalization of the discrete Fourier transform. This transform is known as the
generalized discrete Fourier transform (GDFT), as stated in [15]. The mathematical

description of this transform is defined in [15], and is repeated here for reference.

K-1

Xoprr(k) = 3 a(n)Wgtthdtm) b —g 1, K -1 (2.1)
n=0
1 & (k+ko) (nebro)
z(n) = % Z Xeprr(k)Wg ™ mino) p=0,1,...,K -1 (2.2)
k=0

where

Wk = /) (2.3)

The quantity ng corresponds to the reference for the time origin, and kg corresponds
to the reference for the discrete frequency origin. The definition of the GDFT
provides a basis for the analysis-synthesis equations of the GDFT filter bank. Models
of the GDFT filter bank channels can be seen in Figures 2.3 and 2.4. These channel
models describe the following analysis-synthesis equations of the GDFT filter bank,

defined in [15]. The analysis equation is given as

XEPFT(m) = 3 h(mM —n)a(n)Wg®HR) ™) g =01, K -1 (2.4)

n=-00

and the synthesis equation is given as

zi(n) = 3. fln—mM)XEPFT (m)WEHoletm) gk —0,1,...,K—1 (2.5)

m=-—00

where K represents the number of frequency channels, M is the decimation factor,
and h(n) and f(n) are the analysis and synthesis prototype filters, respectively.
The channel signals are denoted by XSPFT (m) for this particular filter bank. The

channel center frequencies are located at frequencies given by the following equation.

wkz%ﬁ(uko), k=0,1,... K -1 (2.6)




These frequencies represent K equally spaced points on the unit circle in the z-
domain, or equivalently the number of sample points in the GDFT. Expressions for
the SSB modulated channel signals can be derived directly from the above GDFT
channel signals.

As stated previously, SSB modulation results in real-valued channel signals.
SSB modulation involves a frequency translation of two conjugate symmetric fre-
quency bands from a real-valued signal, centered at *wj, to the new locations
w = twpw/2, where wpw is the width of the bands [15]. The resulting SSB modu-
lated channel signal, denoted as X5 (m), is real-valued since its spectrum remains
conjugate symmetric [15]. Slight modification of the GDFT filter bank channel
models results in the SSB filter bank channel models. The modifications necessary
to produce the SSB channel signals are shown in Figures 2.5 and 2.6. Based on
the descriptions in these figures, the equations relating the analysis-synthesis SSB

channel signals to their corresponding GDFT channel signals are given as follows.
X558 (m) = Re[XFPFT (m)efvrwmMI2), (2.7)
XEPFT(m) = XS5B (m)e~semm M1, (28)

where X558 (m) represents the SSB channel signal. By applying Equation 2.4 to 2.7
and Equation 2.8 to 2.5, with reference to Figures 2.5 and 2.6, the analysis-synthesis

equations of the SSB filter bank result. These equations are given as

XS5B(m)=Re[ Y. h(mM — n)x(n)e“j(2”/K)(k+k°)(”+"°)ej“’BWmM/2] (2.9)

= i) h(mM — n)z(n) cos(“’iw;z’f‘ﬂ - %g—(k+k0)(n+no)) (2.10)

and

zi(n)=Re[ Y. f(n-— mM)X;fSB(m)e'j“’BW"‘M/zej(Z’r/K)(k+k°)(”+"°)] (2.11)

m=—00
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wBWmM

00 27
= Y f(n—mM)X3B(m) cos(-]—‘,—(k+ko)(n+n0) - 9

m=-—00

The design of the SSB filter bank depends primarily on the choice of ky. This

)(2.12)

parameter determines the number of SSB channels for a particular K-point GDFT,
and the bandwidths of each of the channels. It is customary to choose ky to be
equal to a rational fraction that is less than 1. The SSB filter bank considered in
this work is based on the choice of ky = 1/2. For this choice of ko, there are K/2

uniformly spaced frequency bands with center frequencies located at

2 1 K
Wk—-l?-(k-{-'i), k——O,l,...,'é——l (213)
and bandwidths of
_ 2 2.14
WBwW = K ( . )

The value of the decimation factor, M, can be determined directly from the value of
K. The relationship between M and K is based on the property of critical sampling.
In a critically sampled filter bank, the number of frequency domain samples is equal
to the number of time domain samples. This implies that the decimation factor
should be equal to the number of frequency bands, since these bands are uniform.
In this case, therefore, the relationship is given as

M=% (2.15)

The above equations for the analysis-synthesis SSB channel signals can now be fur-
ther simplified by substituting the appropriate expressions. It will be convenient to
express these equations in terms of the modulated analysis-synthesis filter responses,
rather than the prototype filter responses. These equations, as defined in [15], are
given as

X55B(m) = i h(mM—-n)m(n)cos(%z—?kzr-(k-l-%)(n—l-no)) (2.16)

n=-—oo
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= (=1) _fj hy(mM —n)z(n), k = 0,1,...,52{—— 1 (2.17)
and
zu(n) = mzf_:oo F(n = mM) X5 (m) cos( i (k+ 3)(m+ma) = T27) (218)
= i (=)™ fr(n — mM)X5B(m), k=0,1,..., % —1 (2.19)
where
2w 1
hi(n) = h(n) cos[?(k + 5)(n — no)] (2.20)
and
2r 1
fi(n) = f(n) cos[2=(k + 5)(n + no)] (2.21)

The equations for hi(n) and fi(n) represent the modulated analysis-synthesis filter
responses.

The design of the SSB filter bank is completed by substitution of appropriate
values for K, M, and no. It was stated earlier that the filter bank consists of 32
bands. The value of M, therefore, is 32, and K, being twice this quantity, is 64.
The determination of ng is based on orthogonality requirements. It is desirable
to design the modulated filter responses in the analysis and synthesis filter banks
so that they are orthogonal with each other. In other words, the dot product of
each filter response with every other filter response should be equal to 0. These

requirements are expressed mathematically as

(hi(n), hj(n)) =0, i=0,1,...,M -1, j#: (2.22)
and :

(fi(n), fi(n)) =0, i=0,1,....M—1, j#1 (2.23)

where h;(n) and fi(n) are the modulated responses for the analysis and synthesis

filter banks, respectively. The analysis and synthesis prototype filters used in this

12




design are also the filters used in the MPEG audio coding standard. The value of
ng in the MPEG coder is 16. This value provides an analysis and synthesis filter
bank design in which the modulated filter responses meet the above orthogonality
requirements. The analysis-synthesis equations of the modulated filter responses are

now given as

hir(n) = h(n) cos[z—;:(k + é—)(n —-16)], k=0,1,...,M -1 (2.24)

and

fu(n) = f(n) cos[z—Z(k + %)(n +16), k=0,1,..,M-1  (225)

2.3 Filter Bank Properties

It is desirable in coding systems designed for compression purposes to produce
‘a reconstructed output which is exactly equal to the input. This condition cannot
be met in a practical system since signals must be quantized. In the absence of
quantization, systems may be designed to produce a reconstructed output which is
in fact identical to the input. This type of system, known as a perfect reconstruction
(PR) system, describes the SSB filter bank used in this work. In the paragraphs
that follow, a brief discussion of the prototype filter characteristics and the necessary
conditions for perfect reconstruction are given.

As stated in the previous section, the analysis and synthesis prototype filters
-used in the design of the SSB filter bank are the same filters used in the MPEG
coding system. These filters fall into the class of symmetric, finite impulse response
(FIR) filters, and have tap lengths of 512. The impulse response coefficients are
given in [20]. Plots of the prototype analysis impulse response and corresponding
frequency response can be seen in Figures 2.7 and 2.8, respectively. Similar plots

of the prototype synthesis responses are shown in Figures 2.9 and 2.10. The axes
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in the frequency domain plots have been normalized with respect to the sampling
frequency, or 2w. The synthesis impulse response coefficients are equal to the anal-
ysis impulse response coeflicients multiplied by a factor of M. This gain is provided
to compensate for attenuation introduced in the decimation processes. As seen
from Figures 2.8 and 2.10, the frequency response of the prbtotype filters show a
narrow transition band with a high side lobe attenuation exceeding 100 dB. These
sharp cutoff characteristics are necessary to eliminate distortions due to aliasing and
imaging. These distortions are inherent in systems involving decimation and inter-
polation operations. The modulated prototype frequency responses, taken together,
form the analysis and synthesis filter banks shown in Figures 2.11 and 2.12, respec-
tively. These filter banks are plotted such that every other modulated response is
shown dotted for clarity reasons. The modulated responses are shifted in frequency
so that there is some allowed overlap between adjacent responses. This overlap is
necessary to prevent the occurance of spectral holes, or gaps, in the reconstructed
output. The amount of overlap, however, must be carefully controlled so that the
overall analysis-synthesis system is an identity, or perfect reconstruction, system.
A practical perfect reconstruction system is able to produce an output signal
which is a delayed replica of the input signal. The expression for the output of the
analysis-synthesis filter bank describes two necessary conditions which must be met
in order for the filter bank to be a perfect reconstruction system. The first of these
conditions, as given in [15], requires the analysis and synthesis filters to satisfy the
desired input-output relation of the back-to-back filter bank. This condition is given

as
1 M-1 ] ]
7 Y. Fi(e)Hi(e™) =1 for all w (2.26)
k=0
which requires the modulated filter products to sum to 1 in the frequency domain.

The terms Hy(e’*) and Fi(e’*) are the Fourier transforms of the modulated analysis
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and synthesis responses, hx(n) and fi(n). Since there is some delay present in the

output, it is sufficient for the filters to satisfy the following expression.

1 M-1 _ .

Ml I;} Fi(e™)Hp(e)| =1 for all w (2.27)
A plot of Equation 2.27 is given in Figure 2.13, where it is shown that the modulated
filters successfully satisfy this expression. This plot can be blown up, as in Figure
2.14, to reveal the presence of small oscillations in the magnitude. These oscilla-
tions, however, are insignificant as far as sufficient filter bank operation is concerned.
The second requirement for perfect reconstruction was mentioned earlier, and in-
volves the elimination of aliasing and imaging components. In most instances, this
condition is automatically satisfied with proper design of the analysis and synthesis

prototype filters. For situations in which M < K, which is the situation considered

here, the cutoff frequency requirement of the prototype analysis filter is given by

T T
_— < e .
K<wch_M (228)

which ensures that aliasing will be avoided and the condition of Equation 2.27 will
be satisfied. In order to avoid imaging after the interpolation processes, the cutoff

frequency of the prototype synthesis filter must meet the following constraint.

2
wen 1o < 77 (2.29)

Both of the above constraints are satisfied, and the analysis-synthesis filter bank
is, in fact, a perfect reconstruction system. The cutoff frequencies of both the
analysis and synthesis prototype filters are equivalent, and are approximately equal
to m/46.5, which lies almost halfway between the frequencies given in Equation 2.28.

The importance of the SSB analysis-synthesis filter bank and its relevance to
the issue of coding will become more evident in the following chapter, where the

concept of subband coding is discussed.
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Figure 2.13: Plot of summed products of analysis and synthesis modu-
lated frequency responses (equation 2.27)
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CHAPTER 3
VARIABLE RATE AND SUBBAND CODING

3.1 Introduction

In coding systems where it is necessary to set the bit rate to a value acceptable
for bandlimited channels, the technique of variable rate coding can be applied. This
coding technique is especially convenient for signals which exhibit widely varying
statistical properties, such as digital audio. Since variable rate coding allows for the
use of variable length binary codewords to represent quantizer output levels, it is
possible to control the expenditure of bits as changes in the level of signal activity
occur over time. The realization of a variable rate code can be accomplished by
applying a form of noiseless source coding to a memoryless, discrete sequence, or
a sequence produced by quantization. The application of noiseless coding subse-
quent to quantization is commonly referred to as entropy coding. The technique of
entropy coding in combination with quantization, in this case scalar quantization,
can achieve a bit rate which is close to the entropy of the quantized source. The
performance of the quantizer is therefore measured by the entropy of its output,
rather than the base two logarithm of its number of levels. It has been shown that
the performance of the uniform quantizer is superior and asymptotically optimal to
the performance of the non-uniform quantizer when its outputs are entropy coded.
Uniform quantization, therefore, is solely the type of quantization that needs to be
considered when entropy coding is used. A natural extension of these concepts leads
to a more efficient form of quantization known as entropy-constrained quantization.
This technique can be conveniently implemented with the use of uniform quantizers.

The quantizer output entropy can be set to any desired value for a fixed number of
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output levels by simply varying the probabilities of these output levels. This can
easily be accomplished by varying the uniform quantizer step size. The technique of
entropy-constrained quantization is precisely the technique used in the audio coding
system in this work.

Entropy coding may take on various forms whose implementations differ in
complexity. The particular form of entropy coding used here is known as arithmetic
coding. Arithmetic coding is a technique which is suitable for the encoding of long
data streams, and is capable of reducing the bit rate to the entropy of the quantized
source. An important attribute of arithmetic coding is the model used to describe
the probability distribution of the message to be encoded. The most efficient model
is one which changes its message symbol probabilities based on the frequency of
occurrence of these symbols. This type of model, known as an adaptive model, is
used in the arithmetic coder in this work.

The unification of the above techniques into a system appropriate for the
coding of digital audio is completed with the addition of subband coding. As stated
in Chapter 1, subband coding is a particular form of frequency domain coding
which acts to reduce the bit rate by minimizing signal redundancy. This is done
by partitioning the spectrum of the source into frequency bands, or subbands, and
coding each of these bands independently with a coder suitably matched to the
statistics of the band. Subband coding used in conjunction with entropy-constrained
quantization and arithmetic coding describes the coding system to be outlined in

the following sections.

3.2 Uniform Scalar Quantization

The purpose of this section is to provide some preliminary definitions associ-

ated with scalar quantization, and to give a description of the quantizers used in
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this work. Much of this information as seen in [21], is repeated here for reference.
Scalar quantization is a mapping of samples from a memoryless source, X,
with probability density function, fx(z), to some reproduction value, ys, in a finite
set of reproduction values, C = {y1,¥2,...,y~n}. The set C is otherwise known as the
codebook. This mapping is subject to a distortion criterion which basically governs
the choice of reproduction value, yj, for a given source sample z. The distortion

criterion, or measure, considered here is the mean-squared error criterion, given by

d(z,yi) = (z — yp)* (3.1)

The mapping of source samples is based on the principle of minimum distortion,
which states that a given source sample, z, will be mapped to reproduction value,
Yk, if d(z,yx) < d(z,y) for all [ # k. It is convenient to define this mapping in

terms of intervals, or bins, as given in [21]. These intervals are specified as
I={z : dz,yx) < d(z,w), alll #k}, k=1,2,...,N (3.2)

which is a partition representing the set of z’s that are nearest in distortion measure

to yi for each y; in C. The partition can also be given in terms of its endpoints as
Iy = [zk—1,2k) = {2 : zp-1 <z <z}, k=12,...,N (3.3)

which may be used to provide a more compact definition of the quantization process.

This definition, as seen in [21], is given as

e =Q(z) ifz el (3.4)
The reproduction values {y1,y2,...,yn} will now be referred to as quantizer lev-
els, and the interval endpoints {zo, zy,...,zN-1,zn} Will be referred to as decision

thresholds [21]. The quantization error is determined by computing the average of
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d(z,Q(z)). This error is more commonly referred to as the distortion, denoted by

D, and is given as
D = Eld(z,Q())] = [ _d(z,Q())fx(c)da (3.5)
Applying equation 3.4 to the above results in

D= z/z“ (2, 94) fx(2)dz (3.6)

where d(z,yx) is given by Equation 3.1, and fx(z) is the source probability density

function (pdf). The rate of the quantizer, measured in bits/sample, is defined as
R =log,(N) (3.7)

which gives the number of binary digits needed to represent one of N quantizer

levels.

The process of uniform scalar quantization may involve uniformly spaced deci-
sion thresholds, quantizer levels, or both. The uniform quantizers used in this work
consist of uniformly spaced decision thresholds and quantizer levels. These quantiz-
ers are mid-tread, meaning there is a quantizer level, yi, located at 0. The number

of quantizer levels, N, is odd in this case and is taken to be 255. The quantizer

levels are specified as
w=a+((k-1)A, k=12,...,N (3.8)

The decision thresholds are placed at the midpoints of the intervals specified by

consecutive quantizer levels. They are given as

xk=a+(k—%)A, k=1,2,...,N—-1 (3.9)

Since the quantizers used are of the mid-tread type with 255 levels, a is given as

a= _£V_2:_1A = —127TA (3.10)
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The quantizer step size, A, is chosen to minimize D for a fixed number of levels,
N. The topic of the following section describes a technique in which the step size is
chosen to minimize the distortion while the entropy of the quantizer output remains

fixed. This technique is known as entropy-constrained quantization.

3.3 Entropy-Constrained Scalar Quantization

Entropy-constrained scalar quantization (ECSQ) is suitable for systems which
make use of some form of entropy coding subsequent to scalar quantization. When
entropy coding is used, it is no longer meaningful to evaluate the performance of
the quantizer using Equation 3.7 as a measure of rate. Also since entropy coding is
noiseless, the only error that results is due to quantization. The entropy, therefore, in
addition to the distortion, are the quantities used to evaluate quantizer performance.

The quantizer output may be regarded as a discrete amplitude, memoryless
source. Each quantizer level has a probability associated with it which can be
computed analytically when the source pdf is known. These probabilities are given

as
P(ys) = Pr{zi1 < X < 24} = / fx(z)de, k=1,2,...,N  (3.11)
Tk—1

The entropy of this source, measured in bits/sample, is defined as

N 1
H = IEP(yk)logQ(m) (3.12)
N
= —I;P(yk)logz(P(yk)) (3.13)

The entropy will always be less than the rate defined in Equation 3.7 since the quan-
tizer level probabilities are not equal. These probabilities can be allowed to vary
by simply varying the interval spacing in Equation 3.11 above. For the uniform

quantizer, this interval spacing is the step size, A. Variations in quantizer level
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probabilities will reflect changes in the entropy of the quantizer output. Therefore,
for a fixed number of quantizer levels, the distortion may be constrained to some
limit, while the step size is adjusted to minimize the entropy. Similarly, the entropy
may be constrained not to exceed some value, while the quantizer step size is ad-
justed to minimize the distortion. For every fixed limit on the quantizer entropy,
there exists a step size, for some minimum value of N, which corresponds to a min-
imum distortion value. The same distortion value can be achieved for larger values
of N for the same entropy, as long as that entropy is less than log,(N). In practice,
N is chosen to be sufficiently large to accomodate the desired range of entropies.
As the limit on the entropy is allowed to vary over a range, the minimum distortion
and corresponding step size may be determined over this range as well. Since the
decision thresholds and quantizer levels are both uniformly spaced, a simple solu-
tion to this task is to vary the quantizer step size and calculate the entropy and
distortion values which correspond. For a given source pdf, an entropy-distortion
characteristic can be determined uéing this technique. For each quantizer step size,
Equations 3.13 and 3.6 may be used to compute corresponding entropy and distor-
tion values. Therefore, it can be determined beforehand which step size is needed
to achieve minimum distortion for a fixed entropy. This method was developed by
Goblick and Holsinger [22] who showed that quantizers with uniformly spaced out-
put levels are nearly optimum for the quantization of Gaussian sequences using the
squared error criterion. It was later shown by Gish and Pierce [23] that, for large
rates, uniform quantization with the output levels located at the midpoints of the
quantization intervals resulted in optimal performance for any density function and
squared error criterion. In this work, a technique is employed in which each subband
signal is quantized using a uniform quantizer whose step size is determined through

the assignment of subband rates. These rates correspond to predetermined values of
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the entropy of the quantizer output -for the uniform quantization of a unit variance
Laplacian source. The choice of the Laplacian density may be attributed to Berger
[24], who showed that quantizers of a fixed entropy rate with uniformly spaced
thresholds are truly optimum under the squared error criterion for data having ei-
ther an exponential or Laplacian distribution. The representation of the quantizer
levels by the midpoints of the quantization intervals is a convenient approximation
and does not significantly degrade performance unless the rate of the quantizer is

small. The Laplacian pdf is given as

fx(a) = - lﬁe-%zl

(3.14)

where o is the standard deviation. The entropy-distortion characteristic for the unit
variance (o2 = 1) Laplacian, using the squared error distortion measure and taking
N to be 255, can be seen in Figure 3.1. This characteristic is also shown in Figure
3.2, where the distortion is expressed in units of decibels. Since the quantizers used
are symmetric, the use of an odd number of levels allows obtainable entropies below
1 bit/sample. Taking N to be equal to 255 levels results in a range of rates that is
both practical and efficient, since each quantizer index may be represented using 8
bits. The application of entropy-constrained scalar quantization to subband coding
will be discussed in the closing section of this chapter. Following, is a discussion of
arithmetic coding, a form of entropy coding used in the subsequent encoding of the

quantizer output.

3.4 Arithmetic Coding

Arithmetic coding is a noiseless compression technique in which a code string
representing a fractional value between 0 and 1 is used to depict the encoded data

[25]. Successive data symbols are encoded according to a probability model used to
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describe the frequency of occurrence of each symbol. Compression is achieved by
assigning shorter codewords to the more probable symbols, and longer codewords to
the less probable symbols, similar to the Huffman coding technique. In arithmetic
coding, however, the symbol probabilities are not restricted to be integral powers of
1/2 in order to achieve optimum performance, as in Huffman coding. The efficiency
of the arithmetic code depends on the accuracy of the model used to represent the
data. The most efficient model is one which adapts to the changing symbol statistics
by updating itself as new data symbols appear over successive iterations. A fixed
model can also be used, however a reduced amount of compression usually results.
There are some tradeoffs between the uses of these models. While the adaptive
model may result in greater compression, its implementation is a bit more complex,
which tends to reduce the speed of operation of the coding algorithms. The fixed
model is more robust and easier to implement since it is unnecessary to update the
model as new data symbols are encoded. The use of the fixed model speeds up
algorithm operation, but results in less compression.

The algorithms used to peform the encoding, or decoding, operate on one
data symbol per iteration. The encoding process is accomplished by performing
successive subdivisions of the unit interval into regions which correspond to the
individual symbol probabilities. Each encoding iteration consists of inspecting a new
data symbol, determining its probability, and subdividing the current interval based
on the value of the new symbol’s probability. In this way, the entire data stream can
be represented by a code string which is equivalent to a real fraction between 0 and
1. As the number of data symbols in the stream increases, the interval needed to
represent them becomes smaller. It is, therefore, necessary to modify the algorithm
to use fixed precision arithmetic. The decoding is accomplished by undoing the

operations of the encoder once the final interval which represents the entire code
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string is known. This is carried out by performing magnitude comparisons between
the code string and the intervals allocated for the data symbols during each decoding
iteration. The intervals are known to the encoder and decoder, and are based on
the symbol probabilities. The magnitude of the code string indicates the width of
the interval, which allows the decoder to determine which symbol was sent upon
inspection of this interval during each iteration.

The arithmetic coding implementation in this work uses an adaptive source
model. Details of the implementation, along with a tutorial overview, are given in

[26].

3.5 Subband Coding

The previous quantization and coding schemes are elegantly linked into a cod-
ing system suitable for digital audio with the addition of subband coding. As pre-
viously stated, subband coding is a frequency domain coding technique in which
an input signal is decomposed into spectral components, and each of these com-
ponents is coded separately. The spectral decomposition is accomplished using an
analysis filter bank, as discussed in Chapter 2. Following the decomposition is a
downsampling operation which causes the filter bank output sequences to become
full band sequences at a lower sampling frequency. The combination of filtering
and downsampling is known as decimation. The decimated outputs are referred to
as subband signals. The subband signals are then suitably coded and are passed
through a synthesis filter bank, subsequent to a decoding operation. The filtered
subband outputs are then upsampled, which increases the sampling frequency of the
subband signals to that of the input signal. The process of filtering and upsampling
is described as interpolation. Reconstruction of the original input is accomplished

by summing the interpolated outputs.
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The coding of each subband component depends greatly on its spectral content,
which is commonly assessed using its variance. Since these subband variances are
different for every subband, the bit rates required to code each of the subbands vary
as well. Although it is common to sfmply vary the number of quantizer levels in order
to meet the required bit rate of each subband, this method imposes the restriction
that the bit rate be an integer value. This restriction may be overcome by using
entropy-constrained quantization for a fixed level quantizer, as discussed above.
This method is well suited for subband coding and does not require the subband
rates to be integer values. Once the required rate for each subband is determined,
a uniform quantizer is selected whose entropy matches this rate. This is equivalent
to choosing a quantizer step size from a predetermined table of step sizes which
gives the required entropy. The determination of subband rates is accomplished
using a rate allocation algorithm which is based on analytic expressions for the
rate-distortion characteristics of the subbands. This algorithm, as seen in [21], is

described in the following section.

3.5.1 Rate Allocation to Subbands

In a subband coding system, it is desirable to distribute rates among subbands
such that the overall distortion takes on its minimum value for a desired overall rate.
Since it is assumed that the subbands are uncorrelated, the relationship between the

subband rates and the overall rate of the system is given as
R==> r, (3.15)

where r,, is the rate of the m* subband, M is the number of subbands, and R is
the code rate of the system measured in bits/sample. A similar expression for the
distortion may be derived. This expression is given in terms of the subband dis-

tortions which are based on the squared-error criterion. These terms will otherwise
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be referred to as the subband’s mean-squared error. The term d,,(ry,) will be used
to represent the mean-squared error of a unit variance subband whose rate is ry,.
The actual subband mean-squared error may be obtained by simply scaling d,, ()

by the subband variance, o%. The reduction of per-sample distortion after inter-

2.
polation is compensated by the gain of the synthesis filter bank to give an overall

distortion after synthesis of
M-1
D= oldu(rn) (3.16)
m=0
where D is the average distortion per sample.
There are useful algorithms for allocating rate among subbands whose meth-
ods do not rely on assumptions of the subband rate-distortion characteristics [27],
[28]. In this system, however, the allocation of rate among subbands is performed
by using an analytic expression to model the rate-distortion characteristic of each
subband. The following equation, as seen in [21], represents a model which is accept-

able for describing the rate versus mean-squared error characteristic for the scalar

quantization of a unit variance signal.
p(r)=g(r)27*", r2>0 (3.17)

where g(r) is defined such that g(0) = 1, and a is a constant whose value cannot
exceed 2. It is convenient to regard g(r) as a constant term, since it is usually much
more slowly varying than the exponential 27%". This term will be denoted by g.

Equation 3.17 is now given as
p(r)=¢27"", r=>0 (3.18)

where the constants g and a are determined from a linear fit to the natural logarithm

of the experimentally determined curve in Figure 3.1. Results of the curve fit give
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the following values for g and a

g = exp(0.22067) =~ 1.247
a = 1.38382/In(2) ~ 1.996

(3.19)

Figure 3.3 shows a plot of Equation 3.18 using the above parameters, along with the
plot shown in Figure 3.1. Figure 3.4 shows the same plots on a log scale. It can be
seen from these figures that the model fits the data fairly well, especially for rates
above 0.5 bits/sample.

The model of Equation 3.18 with the parameters given in (3.19) may now be
used to define the unit variance subband mean-squared error term, d,,(ry), given

in Equation 3.16. This relationship is expressed as
dm(rm) = p(rm) = g27°" (3.20)

The average distortion of Equation 3.16 may now be rewritten as

M-1
D=g Y o227%m (3.21)

m=0
In order to determine the optimal allocation of rates, it is necessary to determine the
set of rates which result in the lowest average distortion, D, for a given code rate,
R. This problem may be solved analytically through the use of the Kuhn-Tucker
Theorem [21], which states the necessary and sufficient conditions for a minimum
point of a convex upward function defined over a convex upward space. The solution,
which is derived in [21], is given as follows
Malp(0) < =, rn=0
(3.22)
Mao?p(rn) = %, Tm > 0
where S/R is interpreted as the scaled slope of a subband rate-distortion curve

evaluated at a particular rate, r,,. The prime is used to indicate a derivative with
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respect to the argument. This solution may be restated as

o2qg/ng,)27%™ = @ forallr, >0
(02.9/nm) (3.23)

olg/nm, < 0 foralr,=0

where n,, is the number of samples per subband and § = —S/a1n(2)Mn, R. Solving

the above for r,, results in

. ={ Hogal(029/nn) 6] » ohg/rm >0 .20

0 y Omg/nm <0
which describes the rate allocation using the model defined in (3.18), and the pa-
rameters defined in (3.19). The parameter, g, drops out by redefining 6 as

0 = - 3.25
p (3.25)

Equation 3.24 above may, therefore, be more compactly written as

. { Logy[(0%/nn) /0] %/ > 0 (526

0 , 02 /n, <6

The parameter ' can be determined iteratively by choosing an initial distortion
range and progressively narrowing this range as the rate, R, falls above or below
the desired rate. This technique is known to converge to the desired (R, D) point
rather quickly.

The subject of the following chapter involves the application of noise masking
phenomena to the rate allocation rule defined in (3.26). A description of the masking
threshold will be given, and it will be shown how this threshold may be used as a

frequency weighting of the noise in each subband.
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Figure 3.1: Distortion versus entropy characteristic for the scalar
quantization of a unit variance Laplacian signal
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Figure 3.2: Distortion versus entropy characteristic of Figure 3.1 on a
log scale
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Figure 3.3: Comparison of the unit variance rate-distortion model
with the curve of Figure 3.1
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Figure 3.4: Comparison of the logarithm of the unit variance rate-
distortion model with the curve of Figure 3.2
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CHAPTER 4
PSYCHOACOUSTIC MASKING

In almost all audio coding systems, properties of human perception are exploited
in some way. This is often accomplished by employing a coding method which
relies on a special form of masking, known as simultaneous masking. Simultaneous
masking is the phenomenon that a weak signal is made inaudible, or masked, by
a simultaneously occurring stronger signal. In audio coding the weak signal may
represent quantization noise or aliasing distortion, and the stronger signal is often a
complex tone. The signal to be masked is referred to as the target, and the masking
signal is referred to as the masker [29]. Masking occurs when the level of the target

falls below what is known as the masking threshold.

4.1 Masking Threshold

The masking threshold is derived from a threshold of hearing in the absence
of a masker, which is known as the threshold in quiet. The threshold in quiet
describes as a function of frequency the level of a pure tone that is just audible
[30]. The term level refers to sound pressure level (SPL), which is measured in
decibels. The threshold in quiet plotted over a logarithmic frequency axis is shown
in Figure 4.1. When a noise target occurs in the presence of a masker, the threshold
of audibility of the target is raised over the threshold in quiet for frequencies near
the frequency of the masker. This raised threshold is called the masking threshold.
Targets whose sound pressure levels lie below the masking threshold are masked.
In audio coding, targets are usually noise sources due to quantization. The goal for

systems designed for high quality coding is to try to keep these noise sources below

44




the masking threshold so that they will not be audible. As a simple illustration of
the masking effect, the masker is considered to be a pure tone. Figure 4.2 shows a
plot of the masking threshold for a pure tone masker at 3.5 kHz. The dotted curve
in this figure is the threshold in quiet. It can be seen from this plot that the slope
of the masking threshold is steeper for lower frequencies, which exemplifies the fact
that higher frequencies are more easily masked.

A more practical masking threshold will appear quite different from the one
shown in Figure 4.2. Source signals often contain multiple maskers and targets,
and the maskers are not always described as tonal. Audio signals consist of many
maskers whose type may be tonal or noise-like. Figure 4.3 shows a typical masking
threshold for a fragment of classical music. The lower curve in Figure 4.3 is the
threshold in quiet. The length of the audio fragment used to compute this threshold
was 23.2 ms. Figure 4.3 demonstrates a broad masking effect which is characterized
by frequent peaks and dips. This type of effect is typical for signals such as audio,
since tonal components generally consist of many harmonics which often occur at
the same time.

Exploitation of the masking effect involves confining the coding errors to lie
below the masking threshold, as previously stated. Since the human ear distin-
guishes sounds over limited frequency bands, called critical bands, it is only logical
to attempt to mask noise targets which occur within these bands. As audio con-
tent and corresponding masking thresholds vary over frequency, so do critical band
noise levels. It is, therefore, necessary to have control over the accuracy with which
certain frequency components are coded, as in subband coding. The masking of
noise targets in subband coding can be best explained by introducing the quantity

known as signal-to-mask ratio (SMR). Signal-to-mask ratio is defined as the ratio




of the signal power to the masking threshold, or as the difference of the correspond-
ing levels in decibels [11]. Within a particular critical band, noise targets will be
masked, or made inaudible, if the signal-to-noise ratio (SNR) in that band exceeds
the SMR. An illustration of this is provided in Figure 4.4. Also shown in this figure
is the quantity called noise-to-mask ratio (NMR), which, if positive, measures the
perceivable distortion in a given critical band. In subband coding, it is desirable to
mask noise targets within subbands. This can be accomplished by determining the
SNR required to just exceed the SMR in a given subband. Determination of the
subband SMR, however, depends directly on the masking threshold.

In order to accurately compute the masking threshold, it is necessary to es-
timate the audio signal’s short-time power spectral density (PSD). Therefore, the
masking threshold is typically computed every 10 — 30 ms [29]. In this work, the
masking threshold is computed using the procedure described in [20]. This proce-
dure may be briefly summarized as follows. First, the short-time PSD is estimated
using a Hann window and a 1024-point FFT. Based on an analysis of the PSD, the
maskers present in the signal are identified. Next, the individual masking thresh-
olds of the critical bands are determined. These thresholds depend on the type and
sound pressure level of the masker, and also the frequency range of each of the crit-
ical bands. The total masking threshold is then computed by adding the individual
masking thresholds of the critical bands and the threshold in quiet. The subband
SMR can be computed by taking the difference between the maximum signal sound
pressure level and the minimum masking threshold sound pressure level within each
subband.

As explained in the previous chapter, the calculation and assignment of sub-
band rates are based on a subband rate-distortion model. Therefore, it is inappro-

priate to simply assign rates to subbands which provide an SNR that just exceeds
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the SMR, as given by the masking condition above. Alternatively, the subband
SMR values are used to weight the noise within each subband in an attempt to
simultaneously satisfy the rate constraint and the masking condition. The previous
description of the rate allocation given in Equation 3.26 is, therefore, in need of

modification as explained in the following section.

4.2 Frequency Weighting of Noise in Subband Coding

One of the benefits of subband coding is the ability to shape the spectrum of
inherent coding noise. This is done by assigning rates which reflect the amount of
distortion associated with a particular subband quantizer. Subband rate assignment
can be influenced by appropriately weighting the subband quantization distortion,
or in this case, the mean-squared error. The subband signal-to-mask ratio provides a
reasonably good indication of the accuracy with which a particular subband should
be coded. The SMR is high when the masking threshold is low, which indicates that
distortions due to coding errors are close to becoming audible. On the contrary, the
SMR is low when the masking threshold is high, which indicates that distortions are
more likely to lie below the masking threshold, and therefore, remain inaudible. The
signal-to-mask ratio can be used to place more emphasis on subbands which are in
need of accurate coding to achieve a high signal-to-noise ratio, and less emphasis on
subbands where additional coding accuracy may not be useful. The unit variance

subband mean-squared error is given in (3.20), and is defined as
dn(rm) =g27%m (4.1)

where g and a are given in (3.19). This equation must be slightly modified when
subband noise weighting is used. The subband weights will be denoted by wy, and

are equal to the subband signal-to-mask ratios on a linear, rather than dB, scale.
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According to the masking condition the subband SNR must exceed the subband

SMR, which may be stated as follows

SNR., > SMR,

101ogyo(772%—) > 10log;o(wn) (4.2)
dm(l'rm) > Wn

where the term, 02 d,,(ry,), represents the subband mean-squared error, and the

subband weights, w,,, are given as

Wy, = 105MEm/10 (4.3)

Since the subband weights are simply used to scale the subband mean-squared error,

the expression in (4.1) for the subband mean-squared error becomes
W02 dp(T) = wro2 g 270 (4.4)

and the previous solution to the Kuhn-Tucker Theorem is now given as

0 y WOl g, <O

W02 [ny,)27%™ = ¢ for all v, >0
( /nm) (4.5)
W02 [Ny < 0 forallr, =0
where ¢ is defined in (3.25). The new rate allocation, therefore, is
Llogy[(wma? [nm) /0] , wmo2 [N, > ¢
- { Llog, [ (wn0? /1) /] / (16)

which is the same as the previous rate allocation given in (3.26), with the exception
of the subband weighting terms. According to the masking condition given in (4.2),
the product wy,dy(ry) must be less than 1 for masking to occur. Simulations have
shown that, on average, this condition is satisfied for the lowest 1/3 of the audio
frequency range when the code rate, R, is set to 2 bits/sample. This range consists of

approximately the lowest ten subbands, and covers the frequencies 0—6890 Hz. Since
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most higher frequency subbands contain less power, lower rates are often assigned
to them, which results in a larger mean-squared error. The masking condition,
therefore, is usually not satisfied for the higher subb.ands, unless of course the code
rate is increased. This tradeoff is further discussed in the following chapter where

the performance of the system is evaluated.

4.2.1 Coding System

A complete system block diagram which includes the calculation of the mask-
ing threshold and the subband rate allocation is shown in Figure 4.5. Here, the steps
involved in the encoding and decoding processes are shown more clearly. The input
signal, z(n), is processed in blocks of 224 samples in length. The motivation for
block processing is explained in the following chapter. Encoding consists of decom-
posing each block into subband components and quantizing these components with
a uniform scalar quantizer whose step size is determined through the assignment of
subband rates. Since these rates depend directly on the subband’s signal-to-mask
ratio, the masking threshold must be computed prior to rate allocation and quanti-
zation. A 1024-point FFT is employed to determine the input’s spectral components
which are used in the computation of the masking threshold. The subband SMR val-
ues are computed next, and following is the allocation of rate among subbands. The
subband quantizer step sizes are then determined from a look-up procedure which
matches each nonzero subband rate with the closest predetermined rate based on the
unit variance subband rate-distortion model. The quantizer step size corresponding
to each matched, nonzero rate is chosen. Subbands receiving an allocated rate of
zero are not transmitted to the decoder. Quantization and subsequent arithmetic
coding of all subband components is then performed, along with the coding of side

information consisting of subband variance values and table indices corresponding
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to the subband rates. The decoding process is simply the inverse of the encoding
process, however it is much less complex since it is not necessary to recompute the
masking threshold and carry out an additional rate allocation. The decoding steps
consist of arithmetically decoding all quantized subband samples and side informa-
tion, performing the inverse quantization to form the subband sample values before
quantization, and synthesizing the output, #(n), from the subband components. As
shown in the following chapter, this output represents an accurate approximation

to the input.
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CHAPTER 5
CODING SIMULATIONS AND PERFORMANCE RESULTS

The performance of the coding system was evaluated by implementing simulations
on monophonic digital audio segments' taken from a compact disc. There were
six audio segments used in the simulations with content ranging from classical to
hard rock. System performance was based on both objective and subjective criteria.
Measures such as mean-squared error (MSE) and signal-to-noise ratio (SNR) were
used as an evaluation of the objective quality of the coding system. Also included
was a measure of compression efficiency. This was determined by comparing the
attainable bit rate to the theoretical entropy of the quantized audio source. The

subjective quality of the system was determined using informal listening tests.

5.1 Objective Performance

The audio test segments used in the simulations were taken from a compact
disc. These segments were sampled at 44.1 kHz and the samples were represented by
16-bit 2’s complement integers. Conversion to floating point format was done before
the samples were processed. The audio segments are listed according to content and
length. A six letter string is used to distinguish one segment from another. This
information is given in Table 5.1. For each of the coding simulations, the code rate,
R, was fixed at 2 bits/sample. The input audio data was processed in blocks which
were equal to 224 samples in length, or approximately 5.08 ms. Block processing
was necessary in order to track changes in signal statistics and masking threshold

characteristics. Similarity between the original and reconstructed audio segments

1The term “segment” is used to indicate a digital sequence representing a portion of an entire
song or movement.
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was measured by computing the MSE and SNR upon completion of each simulation.
The MSE is defined as
MSE = E[(z(n) — 2(n))?] (5.1)

where z(n) and &(n) represent the original and reconstructed audio sequences, re-

spectively. The SNR is given by
oz

where o2 represents the signal power associated with z(n). Table 5.2 contains a
summary of the MSE and SNR calculations for each of the audio segments. This data
shows fairly consistent system performance across all types of audio segments, which
is indicative of the robustness of the system using the subband rate-distortion model
defined in Chapter 3. Waveform plots of portions of the original and reconstructed
audio sequences are provided to accompany the results in Table 5.2. These plots
are shown in Figures 5.1 — 5.4. It can be seen from the plots that the displayed
portions of the reconstructed sequences are nearly identical to the corresponding
portions of the original sequences, which demonstrates very accurate reconstruction
capabilities.

Compression efficiency was evaluated by comparing the fixed code rate, R,
to both the actual code rate obtained after encoding, and the theoretical entropy.
Comparisons are based on the rates associated with the subband samples. Side
information, which consists of rate allocation information and subband variances,
is neglected for the moment. The fixed code rate is given in Equation 3.15. This
quantity represents the mean of the assigned subband rates. The subband rates, in
this case, are the entropies of the subband quantizers. For each of the simulations, R
was set to 2 bits/sample, as mentioned above. The actual code rate was determined

by computing the ratio of the number of bits needed to represent the subband

57




samples to the total number of subband samples sent to the decoder. This quantity
will be denoted by R4. The entropy was computed using the discrete version of

Equation 3.13, which is given as
H ==} Pilog,(P) (5.3)

where P, represents the probability of the index of a particular quantizer level. Table
5.3 summarizes the resulting rates after coding each of the audio segments. It can be
seen that the rates agree moderately well, especially for the coding of the classical
audio segments. Deviation from the fixed rate may be attributed to the inaccuracy
of the model in describing the true rate-distortion characteristics of the quantization
of the subband signals. The average difference between the fixed and actual code
rates was 0.102 bits/sample with a maximum difference of 0.170 bits/sample. Com-
parison between the entropy and the actual code rate gave an average difference of
0.019 bits/sample with a maximum difference of approximately 0.020 bits /sample.
The total code rate was determined by including necessary side information that
had to be made available to the decoder. This information consisted of table indices
corresponding to the subband rates, and also subband variances. The average in-
crease in code rate due to the side information was approximately 0.959 bits/sample.
The actual rate, R4, in addition to this increase forms the total code rate. Values
for the total code rate are shown in Table 5.4, along with the transmission rate,
which is defined as the product of the total code rate and the sampling frequency.
The transmission rate, given in units of kbits/second, was computed for a sampling
frequency of 44.1 kHz. Without compression, the transmission rate for CD-quality
audio is approximately 706 kbits/second. Based on the simulations performed here,
the average code rate was approximately 3.06 bits/ sample, which corresponded to

an average transmission rate of 135 kbits/second. At this rate, the overall reduction
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factor was 5.23.

5.2 Subjective Performance

Listening tests were conducted to evaluate the perceptual quality of the coded
audio segments. The outcomes of the tests were quantified using the method of mean
opinion scoring. This method required subjects to classify the audio segments using
a 5-point grading scale. Two 5-point grading scales are currently in use. One is used
for signal quality, while the other is used for signal impairment. The impairment
scale was used to grade the audio segments in this work. Each impairment level
has an associated number score and label, which describe the differences between
the original and coded audio segments, or equivalently, the noise content of the
coded audio segment. These number scores and corresponding labels are shown in
Table 5.5. Subjects were provided with three headphone presentations of each of
the audio segments. The first of three was always the original, while the remaining
two were the original and coded audio segments presented in an unknown order.
It was the task of the subject to decide which of the two was the original and
to grade the remaining one based on the amount of signal degradation present, if
any. The audio segments were graded over ten trials, where each trial required
grading of all six audio segments. The average of the scores taken over the ten
trials was computed for each segment. This average is otherwise known as the mean
opinion score (MOS) [31]. Resulting MOS values are shown in Table 5.6. With
the exception of the scores for the classical audio segments, these values indicate
very good subjective quality. Since the classical audio segments consisted of sounds
which were very pure relative to the content of the other segments, it was fairly easy
for subjects to make the distinction between the original and the coded segments.

Noticeable sound differences, however, could have been diminished or eliminated
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by increasing the code rate. As a figure of merit for the subjective quality of the
system, the mean MOS value over all audio segments was computed. This value
was equal to 4.4, which would indicate perceptible but tolerable differences in sound

quality between the original and coded audio segments.
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Audio Segment | Content | Length (seconds)
MAHHOR classical 5.44
MOZSTR classical 8.80

STGILF soft rock 5.76
FWMDRM soft rock 6.88
PJMANL hard rock 8.96
STPWGN hard rock 8.32

Table 5.1: Audio test segments

Audio Segment | MSE (x107°) | SNR (dB)
MAHHOR 1.2008 29.9088
MOZSTR 0.6194 32.1598

STGILF 2.5525 29.7843
FWMDRM 1.7050 28.0540
PJMANL 7.5012 29.0491
STPWGN 5.9240 28.7387

Table 5.2: Mean-squared error and signal-to-noise ratio results




Audio Segment | Fixed Rate, R | Actual Rate, R4 | Entropy, H
(bits/sample) | (bits/sample) | (bits/sample)

MAHHOR 2 2.0427 2.0235
MOZSTR 2 2.0094 1.9903

STGILF 2 2.1169 2.0971
FWMDRM 2 2.1529 2.1343
PJMANL 2 2.1227 2.1040
STPWGN 2 2.1702 2.1511

Table 5.3: Comparison among fixed and attainable code rate, and
quantized source entropy

Audio Segment | Total Rate | Transmission Rate
(bits/sample) |  (kbits/second)

MAHHOR 3.0190 133
MOZSTR 2.9748 131

STGILF 3.0771 136
FWMDRM 3.1060 137
PJMANL 3.0739 136
STPWGN 3.1202 138

Table 5.4: Code rate including overhead and corresponding transmis-
sion rate at a sampling frequency of 44.1 kHz
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Number Scores Impairment Scale
) Imperceptible
Perceptible but not Annoying
Slightly Annoying
Annoying
Very Annoying

N QO >

Table 5.5: Five-point adjectival grading scale for signal impairment

Audio Segment | MOS Value
MAHHOR 3.6
MOZSTR 3.3
STGILF 5.0
FWMDRM 4.9
PJMANL 4.8
STPWGN 4.5

Table 5.6: Mean opinion score (MOS) results
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CHAPTER 6
CONCLUSION AND DISCUSSION

A system designed for high quality coding of wideband audio has been presented.
This system employed a 32-band single-sideband modulated filter bank to perform
subband analysis and synthesis operations. Encoding and decoding of the subbands
was accomplished using entropy-constrained scalar quantization and subsequent en-
tropy coding. The subband quantizers contained uniform decision thresholds and
output levels. The number of output levels was 255. Each subband quantizer was
constructed using the subband variance and a uniform step size that corresponded to
the required quantizer entropy given by the subband rate allocation. The subband
quantizer indices, along with side information consisting of subband variances and
indices used to identify the subband rates, were entropy coded. The particuiar form
of entropy coding used in this system was arithmetic coding. An adaptive probability
model was used in the arithmetic encoding and decoding algorithms. The subband
rate allocation procedure that was applied relied on analytic models to describe
the rate-distortion characteristics of the subband quantizers. This method required
minimal computations and resulted in fast convergence for a desired code rate. The
use of the masking threshold was included in the rate allocation procedure as a
weighting factor on the subband distortion terms. This allowed for the placement
of greater emphasis on the subbands which required larger rates, or equivalently,
larger signal-to-noise ratios. The performance of the system was primarily assessed
using comparisons among the code rates and the entropy, as well as mean opinion
score results. At a fixed code rate of 2 bits/sample, the actual code rate deviated

by an average of 0.102 bits/sample. The average difference between the entropy
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and the actual code rate was only 0.019 bits/sample. The average value of the total
code rate, or the actual rate plus side information, was 3.06 bits/sample, which
corresponded to an average transmission rate of 135 kbits/second. At this rate,
the system yielded a mean MOS value of 4.4, which was a reasonably good result
considering there were just six audio segments used in the subjective evaluations.
The system presented in this thesis suggested a unique approach to the cod-
ing of wideband audio signals. In the absence of the overhead, or side information,
code rate, an attempt was made to achieve an actual code rate equivalent to the
entropy of the quantized source samples. Unlike previous audio coding systems, the
approach taken here employed the technique of entropy-constrained scalar quantiza-
tion, and also utilized analytic models to describe the rate-distortion characteristics
of the subband quantizers. The models were derived from the entropy-distortion
characteristic for the uniform quantization of a unit variance Laplacian signal. The
assumption of the Laplacian pdf, which was used to describe the subband signals,
provided the basis for a simple and sufficiently accurate rate-distortion model which
could be easily incorporated into the subband rate allocation procedure. Entropy-
constrained quantization allowed for non-integer subband rates and did not require
the number of quantization levels to vary in order to achieve various degrees of quan-
tizer performance across the subbands. Instead, quantizer performance was based
on the assignment of different quantizer step sizes to each subband. These step
sizes were determined through the assigned rates resulting from the subband rate
allocation procedure. One of the benefits of this rate allocation and quantization
scheme was improved code rate performance over quantization without an entropy
constraint. This result is due to the fact that the quantizer output entropy is always
less than the base two logarithm of the number of quantizer output levels, unless

of course the levels are equally probable. A second benefit is that this scheme was
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computationally efficient, since the rate allocation procedure was known to converge
quickly and the quantizer step size values which corresponded to the subband rates
could be found by simply performing a table look-up.

Simulations have shown that for all of the audio segments encoded, an actual
code rate fairly close to the entropy could be achieved with minimal or impercep-
tible differences in signal quality between the original and coded segments. This
is an interesting result since previous systems have focused on achieving code rates
bound by the “perceptual entropy.” This quantity has been used to define the
minimal code rate needed to maintain transparent differences between the original
and coded segments. It should be noted that in order to have achieved the quan-
tizer output entropy, the masking constraints were satisfied for only a portion of
the audio frequency band. In some cases, this was not perceptibly tolerable. An-
other disadvantage that resulted was the increase in code rate due to the rate of
the side information. The average increase was 0.959 bits/ sample, which was quite
substantial and clearly undesirable. Contributing most to this increase were the
subband variances which were used by the decoder to scale the subband quantizers.
A reasonable solution would be to quantize these variances in order to reduce the
number of bits used to represent them. The code rate increase due to side informa-
tion caused the average of the total code rates to be equal to approximately 3.06
bits/ samplé when the fixed code rate was set to 2 bits/sample. The transmission
rate corresponding to this total code rate was 135 kbits/second per monophonic
channel, and the mean MOS value was 4.4. These performance results fall in be-
tween the results of the Layer I and Layer Il MPEG audio coders. The sampling
rate used in the MPEG evaluations was 48 kHz. Evaluations of the Layer I MPEG
audio coder resulted in a mean MOS value (over 10 test items) of 4.7 at a rate of 192

kbits/second per monophonic channel, while Layer II MPEG evaluations resulted

72




in a mean MOS value of 4.8 at a rate of 128 kbits/second per monophonic channel
[11]. The equivalent code rate for Layer I MPEG was 4 bits/sample, while for Layer
I it was 2.67 bits/sample.

The system presented in this thesis, while comparable in its rate reduction
ability, gives lower subjective performance than either the Layer I or Layer Il MPEG
coders. The subjective performance can be improved, however, by simply increasing
the code rate. In order to satisfy both performance goals, the code rate increase
caused by side information must be reduced. The system will then be able to provide
the desired reductions in rate and maintain the high level of signal quality that is

so essential in wideband audio coding systems.
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